Peter B Gilkey 
GEOMETRY OF SPHERICAL SPACE FORM… (V7) [PDF ebook] 

支持

In this volume, the geometry of spherical space form groups is studied using the eta invariant. The author reviews the analytical properties of the eta invariant of Atiyah-Patodi-Singer and describes how the eta invariant gives rise to torsion invariants in both K-theory and equivariant bordism. The eta invariant is used to compute the K-theory of spherical space forms, and to study the equivariant unitary bordism of spherical space forms and the Pinc and Spinc equivariant bordism groups for spherical space form groups. This leads to a complete structure theorem for these bordism and K-theory groups.There is a deep relationship between topology and analysis with differential geometry serving as the bridge. This book is intended to serve as an introduction to this subject for people from different research backgrounds.This book is intended as a research monograph for people who are not experts in all the areas discussed. It is written for topologists wishing to understand some of the analytic details and for analysists wishing to understand some of the topological ideas. It is also intended as an introduction to the field for graduate students.

€154.99
支付方式
购买此电子书可免费获赠一本!
语言 英语 ● 格式 PDF ● 网页 372 ● ISBN 9789814434423 ● 文件大小 17.2 MB ● 出版者 World Scientific Publishing Company ● 市 Singapore ● 国家 SG ● 发布时间 1989 ● 下载 24 个月 ● 货币 EUR ● ID 2680172 ● 复制保护 Adobe DRM
需要具备DRM功能的电子书阅读器

来自同一作者的更多电子书 / 编辑

943 此类电子书

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();