Richard Courant & Herbert Robbins 
Was ist Mathematik? [PDF ebook] 

支持

47 brauchen nur den Nenner n so groß zu wählen, daß das Intervall [0, Ijn] kleiner wird als das fragliche Intervall [A, B], dann muß mindestens einer der Brüche mfn innerhalb des Intervalls liegen. Also kann es kein noch so kleines Intervall auf der Achse geben, das von rationalen Punkten frei wäre. Es folgt weiterhin, daß es in jedem Intervall unendlich viele rationale Punkte geben muß; denn wenn es nur eine endliche Anzahl gäbe, so könnte das Intervall zwischen zwei beliebigen benachbarten Punkten keine rationalen Punkte enthalten, was, wie wir eben sahen, unmöglich ist. § 2. Inkommensurable Strecken, irrationale Zahlen und der Grenzwertbegriff 1. Einleitung Vergleicht man zwei Strecken a und b hinsichtlich ihrer Größe, so kann es vor­ kommen, daß a in b genau r-mal enthalten ist, wobei r eine ganze Zahl darstellt. In diesem Fall können wir das Maß der Strecke b durch das von a ausdrücken, indem wir sagen, daß die Länge von b das r-fache der Länge von a ist. Oder es kann sich zeigen, daß man, wenn auch kein ganzes Vielfaches von a genau gleich bist, doch a in, sagen wir, n gleiche Strecken von der Länge ajn teilen kann, so daß ein ganzes Vielfaches m der Strecke ajn gleich b wird: (1) b=~a.

€43.82
支付方式
购买此电子书可免费获赠一本!
语言 德语 ● 格式 PDF ● ISBN 9783662134078 ● 翻译者 Iris Runge ● 出版者 Springer Berlin Heidelberg ● 发布时间 2013 ● 下载 3 时 ● 货币 EUR ● ID 6344454 ● 复制保护 Adobe DRM
需要具备DRM功能的电子书阅读器

来自同一作者的更多电子书 / 编辑

48,816 此类电子书