Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebraische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± V-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + V-121 + ~2 – V-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z.B. J 1 + V-3 + J 1 – V-3 = v6. Im Jahre 1777 führte L. EULER die Bezeichnung i = y CI für die imaginäre Einheit ein. Der Fachausdruck ‘komplexe Zahl’ stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.
Rolf Busam & Eberhard Freitag
Funktionentheorie [PDF ebook]
Funktionentheorie [PDF ebook]
购买此电子书可免费获赠一本!
语言 德语 ● 格式 PDF ● ISBN 9783662073506 ● 出版者 Springer Berlin Heidelberg ● 发布时间 2013 ● 下载 3 时 ● 货币 EUR ● ID 6595422 ● 复制保护 Adobe DRM
需要具备DRM功能的电子书阅读器