The authors introduce a generalization of the Fourier transform, denoted by $/mathcal{F}_C$, on the isotropic cone $C$ associated to an indefinite quadratic form of signature $(n_1, n_2)$ on $/mathbb{R}^n$ ($n=n_1+n_2$: even). This transform is in some sense the unique and natural unitary operator on $L^2(C)$, as is the case with the Euclidean Fourier transform $/mathcal{F}_{/mathbb{R}^n}$ on $L^2(/mathbb{R}^n)$. Inspired by recent developments of algebraic representation theory of reductive groups, the authors shed new light on classical analysis on the one hand, and give the global formulas for the $L^2$-model of the minimal representation of the simple Lie group $G=O(n_1+1, n_2+1)$ on the other hand.
购买此电子书可免费获赠一本!
格式 PDF ● 网页 132 ● ISBN 9781470406172 ● 出版者 American Mathematical Society ● 下载 3 时 ● 货币 EUR ● ID 6597471 ● 复制保护 Adobe DRM
需要具备DRM功能的电子书阅读器