Richard Warren 
Structure of $k$-$CS$- Transitive Cycle-Free Partial Orders [PDF ebook] 

الدعم

The class of cycle-free partial orders (CFPOs) is defined, and the CFPOs fulfilling a natural transitivity assumption, called $k$-connected set transitivity ($k$-$CS$-transitivity), are analyzed in some detail. Classification in many of the interesting cases is given. This work generalizes Droste’s classification of the countable $k$-transitive trees ($k /geq 2$). In a CFPO, the structure can branch downwards as well as upwards, and can do so repeatedly (though it never returns to the starting point by a cycle). Mostly it is assumed that $k /geq 3$ and that all maximal chains are finite. The main classification splits into the sporadic and skeletal cases. The former is complete in all cardinalities. The latter is performed only in the countable case. The classification is considerably more complicated than for trees, and skeletal CFPOs exhibit rich, elaborate and rather surprising behavior. Features: Lucid exposition of an important generalization of Droste’s work Extended introduction clearly explaining the scope of the memoir Visually attractive topic with copious illustrations Self-contained material, requiring few prerequisites

€83.45
طرق الدفع
قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
شكل PDF ● صفحات 166 ● ISBN 9781470401993 ● الناشر American Mathematical Society ● للتحميل 3 مرات ● دقة EUR ● هوية شخصية 6612813 ● حماية النسخ Adobe DRM
يتطلب قارئ الكتاب الاليكتروني قادرة DRM

المزيد من الكتب الإلكترونية من نفس المؤلف (المؤلفين) / محرر

49٬673 كتب إلكترونية في هذه الفئة