Richard Warren 
Structure of $k$-$CS$- Transitive Cycle-Free Partial Orders [PDF ebook] 

Support

The class of cycle-free partial orders (CFPOs) is defined, and the CFPOs fulfilling a natural transitivity assumption, called $k$-connected set transitivity ($k$-$CS$-transitivity), are analyzed in some detail. Classification in many of the interesting cases is given. This work generalizes Droste’s classification of the countable $k$-transitive trees ($k /geq 2$). In a CFPO, the structure can branch downwards as well as upwards, and can do so repeatedly (though it never returns to the starting point by a cycle). Mostly it is assumed that $k /geq 3$ and that all maximal chains are finite. The main classification splits into the sporadic and skeletal cases. The former is complete in all cardinalities. The latter is performed only in the countable case. The classification is considerably more complicated than for trees, and skeletal CFPOs exhibit rich, elaborate and rather surprising behavior. Features: Lucid exposition of an important generalization of Droste’s work Extended introduction clearly explaining the scope of the memoir Visually attractive topic with copious illustrations Self-contained material, requiring few prerequisites

€83.45
payment methods
Buy this ebook and get 1 more FREE!
Format PDF ● Pages 166 ● ISBN 9781470401993 ● Publisher American Mathematical Society ● Downloadable 3 times ● Currency EUR ● ID 6612813 ● Copy protection Adobe DRM
Requires a DRM capable ebook reader

More ebooks from the same author(s) / Editor

49,673 Ebooks in this category