Valentin Féray & Pierre-Loïc Méliot 
Mod-ϕ Convergence [PDF ebook] 
Normality Zones and Precise Deviations

الدعم


The canonical way to establish the central limit theorem for i.i.d. random variables is to use characteristic functions and Lévy’s continuity theorem. This monograph focuses on this characteristic function approach and presents a renormalization theory called mod-ϕ convergence. This type of convergence is a relatively new concept with many deep ramifications, and has not previously been published in a single accessible volume. The authors construct an extremely flexible framework using this concept in order to study limit theorems and large deviations for a number of probabilistic models related to classical probability, combinatorics, non-commutative random variables, as well as geometric and number-theoretical objects. 

Intended for researchers in probability theory, the text is carefully well-written and well-structured, containing a great amount of detail and interesting examples. 

€53.49
طرق الدفع

قائمة المحتويات

Preface.- Introduction.- Preliminaries.- Fluctuations in the case of lattice distributions.- Fluctuations in the non-lattice case.- An extended deviation result from bounds on cumulants.- A precise version of the Ellis-Gärtner theorem.- Examples with an explicit generating function.- Mod-Gaussian convergence from a factorisation of the PGF.- Dependency graphs and mod-Gaussian convergence.- Subgraph count statistics in Erdös-Rényi random graphs.- Random character values from central measures on partitions.- Bibliography.

قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
لغة الإنجليزية ● شكل PDF ● صفحات 152 ● ISBN 9783319468228 ● حجم الملف 2.7 MB ● الناشر Springer International Publishing ● مدينة Cham ● بلد CH ● نشرت 2016 ● للتحميل 24 الشهور ● دقة EUR ● هوية شخصية 5022702 ● حماية النسخ DRM الاجتماعية

المزيد من الكتب الإلكترونية من نفس المؤلف (المؤلفين) / محرر

4٬040 كتب إلكترونية في هذه الفئة