Valentin Féray & Pierre-Loïc Méliot 
Mod-ϕ Convergence [PDF ebook] 
Normality Zones and Precise Deviations

Supporto


The canonical way to establish the central limit theorem for i.i.d. random variables is to use characteristic functions and Lévy’s continuity theorem. This monograph focuses on this characteristic function approach and presents a renormalization theory called mod-ϕ convergence. This type of convergence is a relatively new concept with many deep ramifications, and has not previously been published in a single accessible volume. The authors construct an extremely flexible framework using this concept in order to study limit theorems and large deviations for a number of probabilistic models related to classical probability, combinatorics, non-commutative random variables, as well as geometric and number-theoretical objects. 

Intended for researchers in probability theory, the text is carefully well-written and well-structured, containing a great amount of detail and interesting examples. 

€53.49
Modalità di pagamento

Tabella dei contenuti

Preface.- Introduction.- Preliminaries.- Fluctuations in the case of lattice distributions.- Fluctuations in the non-lattice case.- An extended deviation result from bounds on cumulants.- A precise version of the Ellis-Gärtner theorem.- Examples with an explicit generating function.- Mod-Gaussian convergence from a factorisation of the PGF.- Dependency graphs and mod-Gaussian convergence.- Subgraph count statistics in Erdös-Rényi random graphs.- Random character values from central measures on partitions.- Bibliography.

Acquista questo ebook e ricevine 1 in più GRATIS!
Lingua Inglese ● Formato PDF ● Pagine 152 ● ISBN 9783319468228 ● Dimensione 2.7 MB ● Casa editrice Springer International Publishing ● Città Cham ● Paese CH ● Pubblicato 2016 ● Scaricabile 24 mesi ● Moneta EUR ● ID 5022702 ● Protezione dalla copia DRM sociale

Altri ebook dello stesso autore / Editore

4.040 Ebook in questa categoria