Vitaly Bergelson 
Ergodic IP Polynomial Szemeredi Theorem [PDF ebook] 

الدعم

We prove a polynomial multiple recurrence theorem for finitely many commuting measure preserving transformations of a probability space, extending a polynomial Szemeredi theorem appearing in [BL1]. The linear case is a consequence of an ergodic IP-Szemeredi theorem of Furstenberg and Katznelson ([FK2]). Several applications to the fine structure of recurrence in ergodic theory are given, some of which involve weakly mixing systems, for which we also prove a multiparameter weakly mixing polynomial ergodic theorem. The techniques and apparatus employed include a polynomialization of an IP structure theory developed in [FK2], an extension of Hindman’s theorem due to Milliken and Taylor ([M], [T]), a polynomial version of the Hales-Jewett coloring theorem ([BL2]), and a theorem concerning limits of polynomially generated IP-systems of unitary operators ([BFM]).

€80.61
طرق الدفع
قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
شكل PDF ● صفحات 106 ● ISBN 9781470402860 ● الناشر American Mathematical Society ● للتحميل 3 مرات ● دقة EUR ● هوية شخصية 6612892 ● حماية النسخ Adobe DRM
يتطلب قارئ الكتاب الاليكتروني قادرة DRM

المزيد من الكتب الإلكترونية من نفس المؤلف (المؤلفين) / محرر

49٬653 كتب إلكترونية في هذه الفئة