We prove a polynomial multiple recurrence theorem for finitely many commuting measure preserving transformations of a probability space, extending a polynomial Szemeredi theorem appearing in [BL1]. The linear case is a consequence of an ergodic IP-Szemeredi theorem of Furstenberg and Katznelson ([FK2]). Several applications to the fine structure of recurrence in ergodic theory are given, some of which involve weakly mixing systems, for which we also prove a multiparameter weakly mixing polynomial ergodic theorem. The techniques and apparatus employed include a polynomialization of an IP structure theory developed in [FK2], an extension of Hindman’s theorem due to Milliken and Taylor ([M], [T]), a polynomial version of the Hales-Jewett coloring theorem ([BL2]), and a theorem concerning limits of polynomially generated IP-systems of unitary operators ([BFM]).
Vitaly Bergelson
Ergodic IP Polynomial Szemeredi Theorem [PDF ebook]
Ergodic IP Polynomial Szemeredi Theorem [PDF ebook]
Купите эту электронную книгу и получите еще одну БЕСПЛАТНО!
Формат PDF ● страницы 106 ● ISBN 9781470402860 ● издатель American Mathematical Society ● Загружаемые 3 раз ● валюта EUR ● Код товара 6612892 ● Защита от копирования Adobe DRM
Требуется устройство для чтения электронных книг с поддержкой DRM