Benson Farb & Dan Margalit 
A Primer on Mapping Class Groups [EPUB ebook] 

Support

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students.
A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston’s approach to the classification.

€104.99
Zahlungsmethoden

Über den Autor

Benson Farb is professor of mathematics at the University of Chicago. He is the editor of
Problems on Mapping Class Groups and Related Topics and the coauthor of
Noncommutative Algebra.
Dan Margalit is assistant professor of mathematics at Georgia Institute of Technology.

Dieses Ebook kaufen – und ein weitere GRATIS erhalten!
Sprache Englisch ● Format EPUB ● Seiten 512 ● ISBN 9781400839049 ● Dateigröße 8.4 MB ● Verlag Princeton University Press ● Ort Princeton ● Land US ● Erscheinungsjahr 2011 ● herunterladbar 24 Monate ● Währung EUR ● ID 2365700 ● Kopierschutz Adobe DRM
erfordert DRM-fähige Lesetechnologie

Ebooks vom selben Autor / Herausgeber

943 Ebooks in dieser Kategorie

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();