Jan Prüss & Gieri Simonett 
Moving Interfaces and Quasilinear Parabolic Evolution Equations [PDF ebook] 

Support

In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis.

The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations offluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.

€171.19
Zahlungsmethoden

Inhaltsverzeichnis

Preface.- Basic Notations.- General References.- Part I Background.- 1Problems and Strategies.- 2.Tools from Differential Geometry.- Part II Abstract Theory.- 3Operator Theory and Semigroups.- 4.Vector-Valued Harmonic Analysis.- 5.Quasilinear Parabolic Evolution Equations.- Part III Linear Theory.- 6.Elliptic and Parabolic Problems.- 7.Generalized Stokes Problems.- 8.Two-Phase Stokes Problems.- Part IV Nonlinear Problems.- 9.Local Well-Posedness and Regularity.- 10.Linear Stability of Equilibria.- 11.Qualitative Behaviour of the Semiows.- 12.Further Parabolic Evolution Problems.- Biographical Comments.- Outlook and Future Challenges.- References.- List of Figures.- List of Symbols.- Subject Index.

Dieses Ebook kaufen – und ein weitere GRATIS erhalten!
Sprache Englisch ● Format PDF ● Seiten 609 ● ISBN 9783319276984 ● Dateigröße 6.2 MB ● Verlag Springer International Publishing ● Ort Cham ● Land CH ● Erscheinungsjahr 2016 ● herunterladbar 24 Monate ● Währung EUR ● ID 4946424 ● Kopierschutz Soziales DRM

Ebooks vom selben Autor / Herausgeber

2.221 Ebooks in dieser Kategorie