Jan Prüss & Gieri Simonett 
Moving Interfaces and Quasilinear Parabolic Evolution Equations [PDF ebook] 

Ủng hộ

In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis.

The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations offluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.

€171.19
phương thức thanh toán

Mục lục

Preface.- Basic Notations.- General References.- Part I Background.- 1Problems and Strategies.- 2.Tools from Differential Geometry.- Part II Abstract Theory.- 3Operator Theory and Semigroups.- 4.Vector-Valued Harmonic Analysis.- 5.Quasilinear Parabolic Evolution Equations.- Part III Linear Theory.- 6.Elliptic and Parabolic Problems.- 7.Generalized Stokes Problems.- 8.Two-Phase Stokes Problems.- Part IV Nonlinear Problems.- 9.Local Well-Posedness and Regularity.- 10.Linear Stability of Equilibria.- 11.Qualitative Behaviour of the Semiows.- 12.Further Parabolic Evolution Problems.- Biographical Comments.- Outlook and Future Challenges.- References.- List of Figures.- List of Symbols.- Subject Index.

Mua cuốn sách điện tử này và nhận thêm 1 cuốn MIỄN PHÍ!
Ngôn ngữ Anh ● định dạng PDF ● Trang 609 ● ISBN 9783319276984 ● Kích thước tập tin 6.2 MB ● Nhà xuất bản Springer International Publishing ● Thành phố Cham ● Quốc gia CH ● Được phát hành 2016 ● Có thể tải xuống 24 tháng ● Tiền tệ EUR ● TÔI 4946424 ● Sao chép bảo vệ DRM xã hội

Thêm sách điện tử từ cùng một tác giả / Biên tập viên

2.221 Ebooks trong thể loại này