This book presents an approximation theory for a general class of nonlinear evolution equations in Banach spaces and the semigroup theory, including the linear (Hille-Yosida), nonlinear (Crandall-Liggett) and time-dependent (Crandall-Pazy) theorems.The implicit finite difference method of Euler is shown to generate a sequence convergent to the unique integral solution of evolution equations of the maximal monotone type. Moreover, the Chernoff theory provides a sufficient condition for consistent and stable time integration of time-dependent nonlinear equations. The Trotter-Kato theorem and the Lie-Trotter type product formula give a mathematical framework for the convergence analysis of numerical approximations of solutions to a general class of partial differential equations. This book contains examples demonstrating the applicability of the generation as well as the approximation theory.In addition, the Kobayashi-Oharu approach of locally quasi-dissipative operators is discussed for homogeneous as well as nonhomogeneous equations. Applications to the delay differential equations, Navier-Stokes equation and scalar conservation equation are given.
Kazufumi Ito & Franz Kappel
EVOLUTION EQNS & APPROXIMATIONS (V61) [PDF ebook]
EVOLUTION EQNS & APPROXIMATIONS (V61) [PDF ebook]
¡Compre este libro electrónico y obtenga 1 más GRATIS!
Idioma Inglés ● Formato PDF ● Páginas 520 ● ISBN 9789812777294 ● Tamaño de archivo 17.2 MB ● Editorial World Scientific Publishing Company ● Ciudad Singapore ● País SG ● Publicado 2002 ● Descargable 24 meses ● Divisa EUR ● ID 2446254 ● Protección de copia Adobe DRM
Requiere lector de ebook con capacidad DRM