This book presents an approximation theory for a general class of nonlinear evolution equations in Banach spaces and the semigroup theory, including the linear (Hille-Yosida), nonlinear (Crandall-Liggett) and time-dependent (Crandall-Pazy) theorems.The implicit finite difference method of Euler is shown to generate a sequence convergent to the unique integral solution of evolution equations of the maximal monotone type. Moreover, the Chernoff theory provides a sufficient condition for consistent and stable time integration of time-dependent nonlinear equations. The Trotter-Kato theorem and the Lie-Trotter type product formula give a mathematical framework for the convergence analysis of numerical approximations of solutions to a general class of partial differential equations. This book contains examples demonstrating the applicability of the generation as well as the approximation theory.In addition, the Kobayashi-Oharu approach of locally quasi-dissipative operators is discussed for homogeneous as well as nonhomogeneous equations. Applications to the delay differential equations, Navier-Stokes equation and scalar conservation equation are given.
Kazufumi Ito & Franz Kappel
EVOLUTION EQNS & APPROXIMATIONS (V61) [PDF ebook]
EVOLUTION EQNS & APPROXIMATIONS (V61) [PDF ebook]
Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format PDF ● Pages 520 ● ISBN 9789812777294 ● Taille du fichier 17.2 MB ● Maison d’édition World Scientific Publishing Company ● Lieu Singapore ● Pays SG ● Publié 2002 ● Téléchargeable 24 mois ● Devise EUR ● ID 2446254 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM