The property of maximal $L_p$-regularity for parabolic evolution equations is investigated via the concept of $/mathcal R$-sectorial operators and operator-valued Fourier multipliers. As application, we consider the $L_q$-realization of an elliptic boundary value problem of order $2m$ with operator-valued coefficients subject to general boundary conditions. We show that there is maximal $L_p$-$L_q$-regularity for the solution of the associated Cauchy problem provided the top order coefficients are bounded and uniformly continuous.
¡Compre este libro electrónico y obtenga 1 más GRATIS!
Formato PDF ● Páginas 114 ● ISBN 9781470403867 ● Editorial American Mathematical Society ● Descargable 3 veces ● Divisa EUR ● ID 6612983 ● Protección de copia Adobe DRM
Requiere lector de ebook con capacidad DRM