The property of maximal $L_p$-regularity for parabolic evolution equations is investigated via the concept of $/mathcal R$-sectorial operators and operator-valued Fourier multipliers. As application, we consider the $L_q$-realization of an elliptic boundary value problem of order $2m$ with operator-valued coefficients subject to general boundary conditions. We show that there is maximal $L_p$-$L_q$-regularity for the solution of the associated Cauchy problem provided the top order coefficients are bounded and uniformly continuous.
Cumpărați această carte electronică și primiți încă 1 GRATUIT!
Format PDF ● Pagini 114 ● ISBN 9781470403867 ● Editura American Mathematical Society ● Descărcabil 3 ori ● Valută EUR ● ID 6612983 ● Protecție împotriva copiilor Adobe DRM
Necesită un cititor de ebook capabil de DRM