Jin Feng 
Large Deviations for Stochastic Processes [PDF ebook] 

Support

The book is devoted to the results on large deviations for a class of stochastic processes. Following an introduction and overview, the material is presented in three parts. Part 1 gives necessary and sufficient conditions for exponential tightness that are analogous to conditions for tightness in the theory of weak convergence. Part 2 focuses on Markov processes in metric spaces. For a sequence of such processes, convergence of Fleming’s logarithmically transformed nonlinear semigroups is shown to imply the large deviation principle in a manner analogous to the use of convergence of linear semigroups in weak convergence. Viscosity solution methods provide applicable conditions for the necessary convergence. Part 3 discusses methods for verifying the comparison principle for viscosity solutions and applies the general theory to obtain a variety of new and known results on large deviations for Markov processes. In examples concerning infinite dimensional state spaces, new comparison principles are derived for a class of Hamilton-Jacobi equations in Hilbert spaces and in spaces of probability measures.

€156.71
méthodes de payement
Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Format PDF ● Pages 410 ● ISBN 9781470413583 ● Maison d’édition American Mathematical Society ● Téléchargeable 3 fois ● Devise EUR ● ID 6613629 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM

Plus d’ebooks du même auteur(s) / Éditeur

48 816 Ebooks dans cette catégorie