Jin Feng 
Large Deviations for Stochastic Processes [PDF ebook] 

Apoio

The book is devoted to the results on large deviations for a class of stochastic processes. Following an introduction and overview, the material is presented in three parts. Part 1 gives necessary and sufficient conditions for exponential tightness that are analogous to conditions for tightness in the theory of weak convergence. Part 2 focuses on Markov processes in metric spaces. For a sequence of such processes, convergence of Fleming’s logarithmically transformed nonlinear semigroups is shown to imply the large deviation principle in a manner analogous to the use of convergence of linear semigroups in weak convergence. Viscosity solution methods provide applicable conditions for the necessary convergence. Part 3 discusses methods for verifying the comparison principle for viscosity solutions and applies the general theory to obtain a variety of new and known results on large deviations for Markov processes. In examples concerning infinite dimensional state spaces, new comparison principles are derived for a class of Hamilton-Jacobi equations in Hilbert spaces and in spaces of probability measures.

€156.71
Métodos de Pagamento
Compre este e-book e ganhe mais 1 GRÁTIS!
Formato PDF ● Páginas 410 ● ISBN 9781470413583 ● Editora American Mathematical Society ● Carregável 3 vezes ● Moeda EUR ● ID 6613629 ● Proteção contra cópia Adobe DRM
Requer um leitor de ebook capaz de DRM

Mais ebooks do mesmo autor(es) / Editor

49.921 Ebooks nesta categoria