Vladimir Kadets & Miguel Martin 
Spear Operators Between Banach Spaces [EPUB ebook] 

Support

This monograph is devoted to the study of spear operators, that is, bounded linear operators G between Banach spaces X and Y satisfying that for every other bounded linear operator T:X ? Y there exists a modulus-one scalar ? such that? G+?T? = 1 + ?T?.This concept extends the properties of the identity operator in those Banach spaces having numerical index one. Many examples among classical spaces are provided, being one of them the Fourier transform on L1. The relationships with the Radon-Nikodym property, with Asplund spaces and with the duality, and some isometric and isomorphic consequences are provided. Finally, Lipschitz operators satisfying the Lipschitz version of the equation above are studied. The book could be of interest to young researchers and specialists in functional analysis, in particular to those interested in Banach spaces and their geometry. It is essentially self-contained and only basic knowledge of functional analysis is needed.

€51.24
méthodes de payement
Achetez cet ebook et obtenez-en 1 de plus GRATUITEMENT !
Langue Anglais ● Format EPUB ● ISBN 9783319713335 ● Maison d’édition Springer International Publishing ● Publié 2018 ● Téléchargeable 3 fois ● Devise EUR ● ID 6647116 ● Protection contre la copie Adobe DRM
Nécessite un lecteur de livre électronique compatible DRM

Plus d’ebooks du même auteur(s) / Éditeur

48 816 Ebooks dans cette catégorie