Vladimir Kadets & Miguel Martin 
Spear Operators Between Banach Spaces [EPUB ebook] 

поддержка

This monograph is devoted to the study of spear operators, that is, bounded linear operators G between Banach spaces X and Y satisfying that for every other bounded linear operator T:X ? Y there exists a modulus-one scalar ? such that? G+?T? = 1 + ?T?.This concept extends the properties of the identity operator in those Banach spaces having numerical index one. Many examples among classical spaces are provided, being one of them the Fourier transform on L1. The relationships with the Radon-Nikodym property, with Asplund spaces and with the duality, and some isometric and isomorphic consequences are provided. Finally, Lipschitz operators satisfying the Lipschitz version of the equation above are studied. The book could be of interest to young researchers and specialists in functional analysis, in particular to those interested in Banach spaces and their geometry. It is essentially self-contained and only basic knowledge of functional analysis is needed.

€51.24
Способы оплаты
Купите эту электронную книгу и получите еще одну БЕСПЛАТНО!
язык английский ● Формат EPUB ● ISBN 9783319713335 ● издатель Springer International Publishing ● опубликованный 2018 ● Загружаемые 3 раз ● валюта EUR ● Код товара 6647116 ● Защита от копирования Adobe DRM
Требуется устройство для чтения электронных книг с поддержкой DRM

Больше книг от того же автора (ов) / редактор

49 366 Электронные книги в этой категории