Robert C Dalang 
Hitting Probabilities for Nonlinear Systems of Stochastic Waves [PDF ebook] 

समर्थन

The authors consider a $d$-dimensional random field $u = /{u(t, x)/}$ that solves a non-linear system of stochastic wave equations in spatial dimensions $k /in /{1, 2, 3/}$, driven by a spatially homogeneous Gaussian noise that is white in time. They mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent $/beta$. Using Malliavin calculus, they establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of $/mathbb{R}^d$, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that appears in the Hausdorff measure is close to optimal, and shows that when $d(2-/beta) > 2(k+1)$, points are polar for $u$. Conversely, in low dimensions $d$, points are not polar. There is, however, an interval in which the question of polarity of points remains open.

€107.55
भुगतान की विधि
यह ईबुक खरीदें और 1 और मुफ़्त पाएं!
स्वरूप PDF ● पेज 75 ● ISBN 9781470425074 ● प्रकाशक American Mathematical Society ● प्रकाशित 2015 ● डाउनलोड करने योग्य 3 बार ● मुद्रा EUR ● आईडी 8057022 ● कॉपी सुरक्षा Adobe DRM
एक DRM सक्षम ईबुक रीडर की आवश्यकता है

एक ही लेखक से अधिक ईबुक / संपादक

48,927 इस श्रेणी में ईबुक