Robert C Dalang 
Hitting Probabilities for Nonlinear Systems of Stochastic Waves [PDF ebook] 

Wsparcie

The authors consider a $d$-dimensional random field $u = /{u(t, x)/}$ that solves a non-linear system of stochastic wave equations in spatial dimensions $k /in /{1, 2, 3/}$, driven by a spatially homogeneous Gaussian noise that is white in time. They mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent $/beta$. Using Malliavin calculus, they establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of $/mathbb{R}^d$, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that appears in the Hausdorff measure is close to optimal, and shows that when $d(2-/beta) > 2(k+1)$, points are polar for $u$. Conversely, in low dimensions $d$, points are not polar. There is, however, an interval in which the question of polarity of points remains open.

€107.55
Metody Płatności
Kup ten ebook, a 1 kolejny otrzymasz GRATIS!
Format PDF ● Strony 75 ● ISBN 9781470425074 ● Wydawca American Mathematical Society ● Opublikowany 2015 ● Do pobrania 3 czasy ● Waluta EUR ● ID 8057022 ● Ochrona przed kopiowaniem Adobe DRM
Wymaga czytnika ebooków obsługującego DRM

Więcej książek elektronicznych tego samego autora (ów) / Redaktor

48 927 Ebooki w tej kategorii