Mikhail Gromov 
Metric Structures for Riemannian and Non-Riemannian Spaces [PDF ebook] 

Dukung

Metric theory has undergone a dramatic phase transition in the last decades when its focus moved from the foundations of real analysis to Riemannian geometry and algebraic topology, to the theory of infinite groups and probability theory.

The new wave began with seminal papers by Svarc and Milnor on the growth of groups and the spectacular proof of the rigidity of lattices by Mostow. This progress was followed by the creation of the asymptotic metric theory of infinite groups by Gromov.

The structural metric approach to the Riemannian category, tracing back to Cheeger’s thesis, pivots around the notion of the Gromov–Hausdorff distance between Riemannian manifolds. This distance organizes Riemannian manifolds of all possible topological types into a single connected moduli space, where convergence allows the collapse of dimension with unexpectedly rich geometry, as revealed in the work of Cheeger, Fukaya, Gromov and Perelman. Also, Gromov found metric structure within homotopy theory and thus introduced new invariants controlling combinatorial complexity of maps and spaces, such as the simplicial volume, which is responsible for degrees of maps between manifolds. During the same period, Banach spaces and probability theory underwent a geometric metamorphosis, stimulated by the Levy–Milman concentration phenomenon, encompassing the law of large numbers for metric spaces with measures and dimensions going to infinity.

The first stages of the new developments were presented in Gromov’s course in Paris, which turned into the famous ‘Green Book’ by Lafontaine and Pansu (1979). The present English translation of that work has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices – by Gromov on Levy’s inequality, by Pansu on ‘quasiconvex’ domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures – as well as an extensive bibliographyand index round out this unique and beautiful book.

€128.39
cara pembayaran

Daftar Isi

Preface to the French Edition.- Preface to the English Edition.- Introduction: Metrics Everywhere.- Length Structures: Path Metric Spaces.- Degree and Dilatation.- Metric Structures on Families of Metric Spaces.- Convergence and Concentration of Metrics and Measures.- Loewner Rediscovered.- Manifolds with Bounded Ricci Curvature.- Isoperimetric Inequalities and Amenability.- Morse Theory and Minimal Models.- Pinching and Collapse.- Appendix A: ‘Quasiconvex’ Domains in Rn.- Appendix B: Metric Spaces and Mappings Seen at Many Scales.- Appendix C: Paul Levy’s Isoperimetric Inequality.- Appendix D: Systolically Free Manifolds.- Bibliography.- Glossary of Notation.- Index.

Beli ebook ini dan dapatkan 1 lagi GRATIS!
Bahasa Inggris ● Format PDF ● Halaman 586 ● ISBN 9780817645830 ● Ukuran file 27.9 MB ● Editor Jacques LaFontaine & Pierre Pansu ● Penterjemah S. M. Bates ● Penerbit Birkhäuser Boston ● Kota MA ● Negara US ● Diterbitkan 2007 ● Diunduh 24 bulan ● Mata uang EUR ● ID 2146754 ● Perlindungan salinan DRM sosial

Ebook lainnya dari penulis yang sama / Editor

943 Ebooks dalam kategori ini

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();