Mikhail Gromov 
Metric Structures for Riemannian and Non-Riemannian Spaces [PDF ebook] 

Ủng hộ

Metric theory has undergone a dramatic phase transition in the last decades when its focus moved from the foundations of real analysis to Riemannian geometry and algebraic topology, to the theory of infinite groups and probability theory.

The new wave began with seminal papers by Svarc and Milnor on the growth of groups and the spectacular proof of the rigidity of lattices by Mostow. This progress was followed by the creation of the asymptotic metric theory of infinite groups by Gromov.

The structural metric approach to the Riemannian category, tracing back to Cheeger’s thesis, pivots around the notion of the Gromov–Hausdorff distance between Riemannian manifolds. This distance organizes Riemannian manifolds of all possible topological types into a single connected moduli space, where convergence allows the collapse of dimension with unexpectedly rich geometry, as revealed in the work of Cheeger, Fukaya, Gromov and Perelman. Also, Gromov found metric structure within homotopy theory and thus introduced new invariants controlling combinatorial complexity of maps and spaces, such as the simplicial volume, which is responsible for degrees of maps between manifolds. During the same period, Banach spaces and probability theory underwent a geometric metamorphosis, stimulated by the Levy–Milman concentration phenomenon, encompassing the law of large numbers for metric spaces with measures and dimensions going to infinity.

The first stages of the new developments were presented in Gromov’s course in Paris, which turned into the famous ‘Green Book’ by Lafontaine and Pansu (1979). The present English translation of that work has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices – by Gromov on Levy’s inequality, by Pansu on ‘quasiconvex’ domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures – as well as an extensive bibliographyand index round out this unique and beautiful book.

€128.39
phương thức thanh toán

Mục lục

Preface to the French Edition.- Preface to the English Edition.- Introduction: Metrics Everywhere.- Length Structures: Path Metric Spaces.- Degree and Dilatation.- Metric Structures on Families of Metric Spaces.- Convergence and Concentration of Metrics and Measures.- Loewner Rediscovered.- Manifolds with Bounded Ricci Curvature.- Isoperimetric Inequalities and Amenability.- Morse Theory and Minimal Models.- Pinching and Collapse.- Appendix A: ‘Quasiconvex’ Domains in Rn.- Appendix B: Metric Spaces and Mappings Seen at Many Scales.- Appendix C: Paul Levy’s Isoperimetric Inequality.- Appendix D: Systolically Free Manifolds.- Bibliography.- Glossary of Notation.- Index.

Mua cuốn sách điện tử này và nhận thêm 1 cuốn MIỄN PHÍ!
Ngôn ngữ Anh ● định dạng PDF ● Trang 586 ● ISBN 9780817645830 ● Kích thước tập tin 27.9 MB ● Biên tập viên Jacques LaFontaine & Pierre Pansu ● Phiên dịch S. M. Bates ● Nhà xuất bản Birkhäuser Boston ● Thành phố MA ● Quốc gia US ● Được phát hành 2007 ● Có thể tải xuống 24 tháng ● Tiền tệ EUR ● TÔI 2146754 ● Sao chép bảo vệ DRM xã hội

Thêm sách điện tử từ cùng một tác giả / Biên tập viên

943 Ebooks trong thể loại này

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();