Antoine Henrot 
Extremum Problems for Eigenvalues of Elliptic Operators [PDF ebook] 

Ondersteuning

Problems linking the shape of a domain or the coefficients of an elliptic operator to the sequence of its eigenvalues are among the most fascinating of mathematical analysis. In this book, we focus on extremal problems. For instance, we look for a domain which minimizes or maximizes a given eigenvalue of the Laplace operator with various boundary conditions and various geometric constraints. We also consider the case of functions of eigenvalues. We investigate similar questions for other elliptic operators, such as the Schrödinger operator, non homogeneous membranes, or the bi-Laplacian, and we look at optimal composites and optimal insulation problems in terms of eigenvalues.

Providing also a self-contained presentation of classical isoperimetric inequalities for eigenvalues and 30 open problems, this book will be useful for pure and applied mathematicians, particularly those interested in partial differential equations, the calculus of variations, differential geometry, or spectral theory.

€58.84
Betalingsmethoden

Inhoudsopgave

Eigenvalues of elliptic operators.- Tools.- The first eigenvalue of the Laplacian-Dirichlet.- The second eigenvalue of the Laplacian-Dirichlet.- The other Dirichlet eigenvalues.- Functions of Dirichlet eigenvalues.- Other boundary conditions for the Laplacian.- Eigenvalues of Schrödinger operators.- Non-homogeneous strings and membranes.- Optimal conductivity.- The bi-Laplacian operator.

Koop dit e-boek en ontvang er nog 1 GRATIS!
Taal Engels ● Formaat PDF ● Pagina’s 202 ● ISBN 9783764377069 ● Bestandsgrootte 2.1 MB ● Uitgeverij Springer Basel ● Stad Basel ● Land CH ● Gepubliceerd 2006 ● Downloadbare 24 maanden ● Valuta EUR ● ID 2205712 ● Kopieerbeveiliging Sociale DRM

Meer e-boeken van dezelfde auteur (s) / Editor

2.214 E-boeken in deze categorie