Antoine Henrot 
Extremum Problems for Eigenvalues of Elliptic Operators [PDF ebook] 

Ajutor

Problems linking the shape of a domain or the coefficients of an elliptic operator to the sequence of its eigenvalues are among the most fascinating of mathematical analysis. In this book, we focus on extremal problems. For instance, we look for a domain which minimizes or maximizes a given eigenvalue of the Laplace operator with various boundary conditions and various geometric constraints. We also consider the case of functions of eigenvalues. We investigate similar questions for other elliptic operators, such as the Schrödinger operator, non homogeneous membranes, or the bi-Laplacian, and we look at optimal composites and optimal insulation problems in terms of eigenvalues.

Providing also a self-contained presentation of classical isoperimetric inequalities for eigenvalues and 30 open problems, this book will be useful for pure and applied mathematicians, particularly those interested in partial differential equations, the calculus of variations, differential geometry, or spectral theory.

€58.84
Metode de plata

Cuprins

Eigenvalues of elliptic operators.- Tools.- The first eigenvalue of the Laplacian-Dirichlet.- The second eigenvalue of the Laplacian-Dirichlet.- The other Dirichlet eigenvalues.- Functions of Dirichlet eigenvalues.- Other boundary conditions for the Laplacian.- Eigenvalues of Schrödinger operators.- Non-homogeneous strings and membranes.- Optimal conductivity.- The bi-Laplacian operator.

Cumpărați această carte electronică și primiți încă 1 GRATUIT!
Limba Engleză ● Format PDF ● Pagini 202 ● ISBN 9783764377069 ● Mărime fișier 2.1 MB ● Editura Springer Basel ● Oraș Basel ● Țară CH ● Publicat 2006 ● Descărcabil 24 luni ● Valută EUR ● ID 2205712 ● Protecție împotriva copiilor DRM social

Mai multe cărți electronice de la același autor (i) / Editor

2.214 Ebooks din această categorie