This book describes a broad area of nanomedicine which involves mainly applications, diseases, and diagnostics. The comprehensive coverage provides researchers, academics, and health specialists with a great tool, that includes techniques applicable to various uses.
Cuprins
Preface xv
Part 1: Nanomedicine 1
1 High-technology Therapy Using Biomolecules or Synthetic Compounds for HIV Inhibition 3
Elvis Fosso-Kankeu, Pascaline Fontehand Ajay K.Mishra
1.1 Gene Therapy Including RNAHigh-Technology Against HIV 4
1.2 Metals and HIV Therapy 16
1.3 Conclusions 26
References 27
2 Emerging Nanomedicine Approaches for Osteochondral Tissue Regeneration 39
Author Lineis Missing
2.1 Introduction 39
2.2 Emerging Nanomedicine Approaches 42
References 54
3 Synthesis of Poly(Methacrylate) Encapsulated Magnetite Nanoparticles via Phosphonic Acid Anchoring Chemistry and Its Applications Toward Biomedicine 63
B. Kothandapaniand Ajay K. Mishra
3.1 Introduction 64
3.2 Synthesis of Magnetite Nanoparticles 73
3.3 Application in Biomedical Fields 82
3.4 Conclusions 84
References 85
4 Potentiometric PVC Membrane Sensors and Their Analytical Applications in Pharmaceuticals and Environmental Samples at Micro- and Nano-level 87
Gamal Abel-Hafiz Mostafa
4.1 Introduction 87
4.2 Ion Selective Electrode 88
4.3 Glass Membrane Electrode 89
4.4 Characteristics of ISE 90
4.5 Preparation of PVC Membrane 94
4.6 Method of Preparation of the Liquid Membrane ISEs 96
4.7 Application of Ion Selective Electrodes in Pharmaceutical and Environmental Analysis Using 97
4.8 Conclusion 123
References 127
5 Bioceramics: Silica-based Organic-Inorganic Hybrid Materials for Medical Applications 135
Sadanand Pandey and Shivani B. Mishra
5.1 Introduction 136
5.2 Organic-Inorganic Hybrid Materials 141
5.3 Tissue Engineering 146
5.4 Other Organic-Inorganic Bioceramics for Medical Applications 150
5.5 Conclusion 156
5.6 Considerations and Future Directions 157
Acknowledgement 157
References 158
6 Recent Advances of Multifunctional Nanomedicines 163
Pradeep Pratap Singh and Ambika
6.1 Introduction 163
6.2 Nanomaterials of Biomedical Interest 164
6.3 Target-specific Pharmacotherapy: Need for Nanocarrier Delivery Systems 165
6.4 Engineering of Pharmaceutical Nanosystems 166
6.5 Applications of Pharmaceutical Nanotools 180
6.6 Nanotoxicity 181
6.7 Future prospects 182
6.8 Conclusion 183
References 184
7 Nanomedicinal Approaches for Diabetes Management 189
Prashant Kumar Raiand Ajay Kumar Mishra
7.1 Introduction: The Motivation behind the Chapter 189
7.2 Type of Diabetes 191
7.3 Treatments for Diabetes 192
7.4 Why the Interest in Nanomedicine Research? 193
7.5 The Vision of Nanotechnology and its Clinical Applications for Diabetes 194
7.6 Summary 195
Acknowledgements 195
References 195
8 Polymeric Nanofibersin Regenerative Medicine 197
Narayan Chandra Mishra and Sharmistha Mitra (Majumder)
8.1 Introduction 197
8.2 Preparation of Nanofibers 199
8.3 Recent Advances on Application of Polymeric Nanofibersin Regenerative Medicine 201
8.4 Conclusions 222
References 222
Part 2: Drug Delivery and Therapeutics 227
9 Multifunctional Nano/Micro Polymer Capsules as Potential 229
Haider Sami, J. Jaishree, Ashok Kumar and Sri Sivakumar
9.1 Introduction 230
9.2 Synthesis of Polymer Capsules 232
9.3 Properties of Multilayered Polymer Capsules 237
9.4 Loading of Therapeutics 239
9.5 Stimuli-responsive Polymer Capsules 242
9.6 Multifunctional Hybrid Capsules 255
9.7 Targeted Polymer Capsules 267
9.8 Biomedical Applications 268
9.9 Outlook and Future Prospects 274
References 274
10 Nanophosphors-Nanogold Immunoconjugates in Isolation of Biomembranes and in Drug Delivery 285
Dwijendra Gupta, Dhruv Kumar, Manish Dwivedi, Vijay Tripathi, Pratibha Phadke-Gupta and Surya Pratap Singh
10.1 Introduction 286
10.2 Nanoparticle Technology 287
10.3 The Versatility of Nanoparticles in Biological Sciences 288
10.4 Materials and Methods 293
10.5 Nanotags for Bio-labeling and Targeting: Nanophosphors or Quantum Dots 297
10.6 AFM Study of Cd S and BSATagged Zn S-Mn Nanoparticles 302
10.7 Nano-Conjugates in Drug Delivery 304
10.8 Nanoparticle-mediated Drug Delivery and Nanotherapeutics 305
10.9 The Limitations of QDs 306
10.10 Summary 307
Acknowledgements 308
References 309
11 Cyclodextrin-based Nanoengineered Drug Delivery System 313
Jaya Lakkakula and Rui Werner Maçedo Krause
11.1 Introduction 314
11.2 Inclusion Complex Formation 316
11.3 Phase Solubility Relationships 318
11.4 Effect of Cyclodextrin on Drug Formulation 321
11.5 Cyclodextrin-based Drug Delivery 324
11.6 Cyclodextrins in Novel Drug Delivery Systems (DDS) 331
11.7 Conclusion 335
Acknowledgements 335
References 338
12 Medicinal Patches and Drug Nanoencapsulation 343
María H. Lissarrague, Hernan Garate, Melisa E. Lamanna, Norma B. D’Accorso and Silvia N.Goyanes
12.1 Introduction 343
12.2 Overview of Passive Skin Permeation (Passive Patches) 344
12.3 Recent Development on Skin Permeation 357
12.4 Drug Encapsulation 361
12.5 Triggered Release 369
12.6 Conclusions 374
References 374
13 Dendrimers: AClass of Polymer in the Nanotechnology for the Drug Delivery 379
Sunil K.Singh and Vivek K. Sharma
13.1 Introduction 379
13.2 Historical Origin of Dendrimers 380
13.3 Structure of Dendrimers 381
13.4 Terms Used in Dendrimer Chemistry 383
13.5 Types of Dendrimers 385
13.6 Application of Dendrimers 392
13.7 Dendrimers in Oral Drug Delivery 394
13.8 Dendrimers in Transdermal Drug Delivery 396
13.9 Dendrimers in Ocular Drug Delivery 398
13.10 Dendrimers in Anticancer Drug Delivery 399
13.11 Dendrimers in Cancer Diagnosis and Treatment 401
13.12 Conclusion 411
References 411
14 Designing Nanocarriers for Drug Delivery 417
Munishwar N. Gupta and Joyeeta Mukherjee
14.1 Introduction 417
14.2 Sizes, Shapes and Advantages of Nanomaterials 418
14.3 Bioconjugation Strategies 421
14.4 Carbon Nanotubes 429
14.5 Drug Targeting 434
14.6 Future Perspectives 436
Acknowledgements 437
References 437
15 Multifunctional Polymeric Micelles for Drug Delivery and Therapeutics 443
Alicia Sawdon and Ching-An Peng
15.1 Introduction 443
15.2 Composition, Formation and Characterization of Polymeric Micelles 444
15.3 Polymeric Micelles for Cancer Chemotherapy 450
15.4 Targeting Schemes 457
15.5 Polymeric Micelles for Diagnostics and Imaging 465
15.6 Conclusions 467
References 467
16 Nanoparticles-based Carriers for Gene Therapy and Drug Delivery 477
Marketa Ryvolova, Jana Drbohlavova, Kristyna Smerkova, Jana Chomoucka, Pavlina Sobrova, Vojtech Adam, Pavel Kopel, Jaromir Hubalek and Rene Kizek
16.1 Introduction 478
16.2 Targeted Delivery 478
16.3 Conclusion 494
References 494
Despre autor
Ajay Kumar Mishra is currently working as the Director at the Centre for Nanomaterials Science and also as an associate professor at the Department of Applied Chemistry, University of Johannesburg, South Africa, where he is a group leader of the research area for the composites/nanocomposites, water research, and bio-inorganic chemistry.