Mike Crampin & David Saunders 
Cartan Geometries and their Symmetries [PDF ebook] 
A Lie Algebroid Approach

Підтримка


In this book we first review the ideas of Lie groupoid and Lie algebroid, and the associated concepts of connection. We next consider Lie groupoids of fibre morphisms of a  fibre bundle, and the connections on such groupoids together with their symmetries. We also see how the infinitesimal approach, using Lie algebroids rather than Lie groupoids, and in particular using Lie algebroids of vector fields along the projection of the fibre bundle, may be of benefit.

We then introduce Cartan geometries, together with a number of tools we shall use to study them. We take, as particular examples, the four classical types of geometry: affine, projective, Riemannian and conformal geometry. We also see how our approach can start to fit into a more general theory. Finally, we specialize to the geometries (affine and projective) associated with path spaces and geodesics, and consider their symmetries and other properties.

€96.29
методи оплати

Зміст

Lie groupoids and Lie algebroids.- Connections on Lie groupoids and Lie algebroids.-  Groupoids of fibre morphisms.- Four case studies.- Symmetries.- Cartan geometries.- A comparison with alternative approaches.- Infinitesimal Cartan geometries on TM.- Projective geometry: the full version.- Conformal geometry: the full version.- Developments and geodesics.- Cartan theory of second-order differential equations.    

Придбайте цю електронну книгу та отримайте ще 1 БЕЗКОШТОВНО!
Мова Англійська ● Формат PDF ● Сторінки 290 ● ISBN 9789462391925 ● Розмір файлу 3.2 MB ● Вік 02-99 років ● Видавець Atlantis Press ● Місто Paris ● Країна NL ● Опубліковано 2016 ● Завантажувані 24 місяців ● Валюта EUR ● Посвідчення особи 5048931 ● Захист від копіювання Соціальний DRM

Більше електронних книг того самого автора / Редактор

983 Електронні книги в цій категорі

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();