Pierre R. Deligne & G. Daniel Mostow 
Commensurabilities among Lattices in PU (1, n). (AM-132), Volume 132 [PDF ebook] 

Підтримка

The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann’s classical theorem characterizing hypergeometric functions by their exponents at three singular points.
This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1, n).
The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1, 2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors ‘at infinity’ permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable.

€104.99
методи оплати

Про автора

Pierre Deligne is a Permanent Member of the Department of Mathematics at the Institute for Advanced Study in Princeton.
G. Daniel Mostow is Henry Ford II Professor of Mathematics at Yale University.

Придбайте цю електронну книгу та отримайте ще 1 БЕЗКОШТОВНО!
Мова Англійська ● Формат PDF ● Сторінки 218 ● ISBN 9781400882519 ● Розмір файлу 9.4 MB ● Видавець Princeton University Press ● Місто Princeton ● Країна US ● Опубліковано 2016 ● Завантажувані 24 місяців ● Валюта EUR ● Посвідчення особи 4945366 ● Захист від копіювання Adobe DRM
Потрібен читач електронних книг, що підтримує DRM

Більше електронних книг того самого автора / Редактор

48 816 Електронні книги в цій категорі