Pierre R. Deligne & G. Daniel Mostow 
Commensurabilities among Lattices in PU (1, n). (AM-132), Volume 132 [PDF ebook] 

Ủng hộ

The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann’s classical theorem characterizing hypergeometric functions by their exponents at three singular points.
This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1, n).
The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1, 2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors ‘at infinity’ permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable.

€104.99
phương thức thanh toán

Giới thiệu về tác giả

Pierre Deligne is a Permanent Member of the Department of Mathematics at the Institute for Advanced Study in Princeton.
G. Daniel Mostow is Henry Ford II Professor of Mathematics at Yale University.

Mua cuốn sách điện tử này và nhận thêm 1 cuốn MIỄN PHÍ!
Ngôn ngữ Anh ● định dạng PDF ● Trang 218 ● ISBN 9781400882519 ● Kích thước tập tin 9.4 MB ● Nhà xuất bản Princeton University Press ● Thành phố Princeton ● Quốc gia US ● Được phát hành 2016 ● Có thể tải xuống 24 tháng ● Tiền tệ EUR ● TÔI 4945366 ● Sao chép bảo vệ Adobe DRM
Yêu cầu trình đọc ebook có khả năng DRM

Thêm sách điện tử từ cùng một tác giả / Biên tập viên

48.816 Ebooks trong thể loại này