Ken’ichi Ohshika 
Kleinian Groups which Are Limits of Geometrically Finite Groups [PDF ebook] 

الدعم

Ahlfors conjectured in 1964 that the limit set of every finitely generated Kleinian group either has Lebesgue measure $0$ or is the entire $S^2$. We prove that this conjecture is true for purely loxodromic Kleinian groups which are algebraic limits of geometrically finite groups. What we directly prove is that if a purely loxodromic Kleinian group $/Gamma$ is an algebraic limit of geometrically finite groups and the limit set $/Lambda_/Gamma$ is not the entire $S^2_/infty$, then $/Gamma$ is topologically (and geometrically) tame, that is, there is a compact 3-manifold whose interior is homeomorphic to ${/mathbf H}^3//Gamma$. The proof uses techniques of hyperbolic geometry considerably and is based on works of Maskit, Thurston, Bonahon, Otal, and Canary.

€104.56
طرق الدفع
قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
شكل PDF ● صفحات 116 ● ISBN 9781470404352 ● الناشر American Mathematical Society ● للتحميل 3 مرات ● دقة EUR ● هوية شخصية 6613028 ● حماية النسخ Adobe DRM
يتطلب قارئ الكتاب الاليكتروني قادرة DRM

المزيد من الكتب الإلكترونية من نفس المؤلف (المؤلفين) / محرر

50٬053 كتب إلكترونية في هذه الفئة