Ken’ichi Ohshika 
Kleinian Groups which Are Limits of Geometrically Finite Groups [PDF ebook] 

สนับสนุน

Ahlfors conjectured in 1964 that the limit set of every finitely generated Kleinian group either has Lebesgue measure $0$ or is the entire $S^2$. We prove that this conjecture is true for purely loxodromic Kleinian groups which are algebraic limits of geometrically finite groups. What we directly prove is that if a purely loxodromic Kleinian group $/Gamma$ is an algebraic limit of geometrically finite groups and the limit set $/Lambda_/Gamma$ is not the entire $S^2_/infty$, then $/Gamma$ is topologically (and geometrically) tame, that is, there is a compact 3-manifold whose interior is homeomorphic to ${/mathbf H}^3//Gamma$. The proof uses techniques of hyperbolic geometry considerably and is based on works of Maskit, Thurston, Bonahon, Otal, and Canary.

€104.56
วิธีการชำระเงิน
ซื้อ eBook เล่มนี้และรับฟรีอีก 1 เล่ม!
รูป PDF ● หน้า 116 ● ISBN 9781470404352 ● สำนักพิมพ์ American Mathematical Society ● ที่สามารถดาวน์โหลดได้ 3 ครั้ง ● เงินตรา EUR ● ID 6613028 ● ป้องกันการคัดลอก Adobe DRM
ต้องใช้เครื่องอ่านหนังสืออิเล็กทรอนิกส์ที่มีความสามารถ DRM

หนังสืออิเล็กทรอนิกส์เพิ่มเติมจากผู้แต่งคนเดียวกัน / บรรณาธิการ

49,777 หนังสืออิเล็กทรอนิกส์ในหมวดหมู่นี้