Ken’ichi Ohshika 
Kleinian Groups which Are Limits of Geometrically Finite Groups [PDF ebook] 

Ondersteuning

Ahlfors conjectured in 1964 that the limit set of every finitely generated Kleinian group either has Lebesgue measure $0$ or is the entire $S^2$. We prove that this conjecture is true for purely loxodromic Kleinian groups which are algebraic limits of geometrically finite groups. What we directly prove is that if a purely loxodromic Kleinian group $/Gamma$ is an algebraic limit of geometrically finite groups and the limit set $/Lambda_/Gamma$ is not the entire $S^2_/infty$, then $/Gamma$ is topologically (and geometrically) tame, that is, there is a compact 3-manifold whose interior is homeomorphic to ${/mathbf H}^3//Gamma$. The proof uses techniques of hyperbolic geometry considerably and is based on works of Maskit, Thurston, Bonahon, Otal, and Canary.

€104.89
Betalingsmethoden
Koop dit e-boek en ontvang er nog 1 GRATIS!
Formaat PDF ● Pagina’s 116 ● ISBN 9781470404352 ● Uitgeverij American Mathematical Society ● Downloadbare 3 keer ● Valuta EUR ● ID 6613028 ● Kopieerbeveiliging Adobe DRM
Vereist een DRM-compatibele e-boeklezer

Meer e-boeken van dezelfde auteur (s) / Editor

48.701 E-boeken in deze categorie