The authors prove that it is consistent (relative to a Mahlo cardinal) that all projective sets of reals are Lebesgue measurable, but there is a $/Delta^1_3$ set without the Baire property. The complexity of the set which provides a counterexample to the Baire property is optimal.
¡Compre este libro electrónico y obtenga 1 más GRATIS!
Formato PDF ● Páginas 150 ● ISBN 9781470463953 ● Editorial American Mathematical Society ● Descargable 3 veces ● Divisa EUR ● ID 8057467 ● Protección de copia Adobe DRM
Requiere lector de ebook con capacidad DRM