The authors prove that it is consistent (relative to a Mahlo cardinal) that all projective sets of reals are Lebesgue measurable, but there is a $/Delta^1_3$ set without the Baire property. The complexity of the set which provides a counterexample to the Baire property is optimal.
Koop dit e-boek en ontvang er nog 1 GRATIS!
Formaat PDF ● Pagina’s 150 ● ISBN 9781470463953 ● Uitgeverij American Mathematical Society ● Downloadbare 3 keer ● Valuta EUR ● ID 8057467 ● Kopieerbeveiliging Adobe DRM
Vereist een DRM-compatibele e-boeklezer