The authors prove that it is consistent (relative to a Mahlo cardinal) that all projective sets of reals are Lebesgue measurable, but there is a $/Delta^1_3$ set without the Baire property. The complexity of the set which provides a counterexample to the Baire property is optimal.
Köp den här e-boken och få 1 till GRATIS!
Formatera PDF ● Sidor 150 ● ISBN 9781470463953 ● Utgivare American Mathematical Society ● Nedladdningsbara 3 gånger ● Valuta EUR ● ID 8057467 ● Kopieringsskydd Adobe DRM
Kräver en DRM-kapabel e-läsare