Using a codimension-$1$ algebraic cycle obtained from the Poincare line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety $A$ and showed that the Fourier transform induces a decomposition of the Chow ring $/mathrm{CH}^*(A)$. By using a codimension-$2$ algebraic cycle representing the Beauville-Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of Hyperkaehler varieties deformation equivalent to the Hilbert scheme of length-$2$ subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-$2$ subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.
Beli ebook ini dan dapatkan 1 lagi GRATIS!
Format PDF ● Halaman 161 ● ISBN 9781470428303 ● Penerbit American Mathematical Society ● Diterbitkan 2016 ● Diunduh 3 kali ● Mata uang EUR ● ID 8057067 ● Perlindungan salinan Adobe DRM
Membutuhkan pembaca ebook yang mampu DRM