Using a codimension-$1$ algebraic cycle obtained from the Poincare line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety $A$ and showed that the Fourier transform induces a decomposition of the Chow ring $/mathrm{CH}^*(A)$. By using a codimension-$2$ algebraic cycle representing the Beauville-Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of Hyperkaehler varieties deformation equivalent to the Hilbert scheme of length-$2$ subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-$2$ subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.
Köp den här e-boken och få 1 till GRATIS!
Formatera PDF ● Sidor 161 ● ISBN 9781470428303 ● Utgivare American Mathematical Society ● Publicerad 2016 ● Nedladdningsbara 3 gånger ● Valuta EUR ● ID 8057067 ● Kopieringsskydd Adobe DRM
Kräver en DRM-kapabel e-läsare