Mingmin Shen 
Fourier Transform for Certain HyperKaehler Fourfolds [PDF ebook] 

Ondersteuning

Using a codimension-$1$ algebraic cycle obtained from the Poincare line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety $A$ and showed that the Fourier transform induces a decomposition of the Chow ring $/mathrm{CH}^*(A)$. By using a codimension-$2$ algebraic cycle representing the Beauville-Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of Hyperkaehler varieties deformation equivalent to the Hilbert scheme of length-$2$ subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-$2$ subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.

€138.39
Betalingsmethoden
Koop dit e-boek en ontvang er nog 1 GRATIS!
Formaat PDF ● Pagina’s 161 ● ISBN 9781470428303 ● Uitgeverij American Mathematical Society ● Gepubliceerd 2016 ● Downloadbare 3 keer ● Valuta EUR ● ID 8057067 ● Kopieerbeveiliging Adobe DRM
Vereist een DRM-compatibele e-boeklezer

Meer e-boeken van dezelfde auteur (s) / Editor

50.053 E-boeken in deze categorie