Florin Diacu 
Relative Equilibria in the 3-Dimensional Curved $n$-Body Problem [PDF ebook] 

Sokongan

The author considers the $3$-dimensional gravitational $n$-body problem, $n/ge 2$, in spaces of constant Gaussian curvature $/kappa/ne 0$, i.e. on spheres ${/mathbb S}_/kappa^3$, for $/kappa>0$, and on hyperbolic manifolds ${/mathbb H}_/kappa^3$, for $/kappa<0$. His goal is to define and study relative equilibria, which are orbits whose mutual distances remain constant in time. He also briefly discusses the issue of singularities in order to avoid impossible configurations. He derives the equations of motion and defines six classes of relative equilibria, which follow naturally from the geometric properties of ${/mathbb S}_/kappa^3$ and ${/mathbb H}_/kappa^3$. Then he proves several criteria, each expressing the conditions for the existence of a certain class of relative equilibria, some of which have a simple rotation, whereas others perform a double rotation, and he describes their qualitative behaviour.

€109.65
cara bayaran
Beli ebook ini dan dapatkan 1 lagi PERCUMA!
Format PDF ● Halaman-halaman 80 ● ISBN 9781470414832 ● Penerbit American Mathematical Society ● Muat turun 3 kali ● Mata wang EUR ● ID 6597545 ● Salin perlindungan Adobe DRM
Memerlukan pembaca ebook yang mampu DRM

Lebih banyak ebook daripada pengarang yang sama / Penyunting

49,653 Ebooks dalam kategori ini