Florin Diacu 
Relative Equilibria in the 3-Dimensional Curved $n$-Body Problem [PDF ebook] 

Destek

The author considers the $3$-dimensional gravitational $n$-body problem, $n/ge 2$, in spaces of constant Gaussian curvature $/kappa/ne 0$, i.e. on spheres ${/mathbb S}_/kappa^3$, for $/kappa>0$, and on hyperbolic manifolds ${/mathbb H}_/kappa^3$, for $/kappa<0$. His goal is to define and study relative equilibria, which are orbits whose mutual distances remain constant in time. He also briefly discusses the issue of singularities in order to avoid impossible configurations. He derives the equations of motion and defines six classes of relative equilibria, which follow naturally from the geometric properties of ${/mathbb S}_/kappa^3$ and ${/mathbb H}_/kappa^3$. Then he proves several criteria, each expressing the conditions for the existence of a certain class of relative equilibria, some of which have a simple rotation, whereas others perform a double rotation, and he describes their qualitative behaviour.

€109.19
Ödeme metodları
Bu e-kitabı satın alın ve 1 tane daha ÜCRETSİZ kazanın!
Biçim PDF ● Sayfalar 80 ● ISBN 9781470414832 ● Yayımcı American Mathematical Society ● İndirilebilir 3 kez ● Döviz EUR ● Kimlik 6597545 ● Kopya koruma Adobe DRM
DRM özellikli bir e-kitap okuyucu gerektirir

Aynı yazardan daha fazla e-kitap / Editör

48.721 Bu kategorideki e-kitaplar