Florin Diacu 
Relative Equilibria in the 3-Dimensional Curved $n$-Body Problem [PDF ebook] 

Ủng hộ

The author considers the $3$-dimensional gravitational $n$-body problem, $n/ge 2$, in spaces of constant Gaussian curvature $/kappa/ne 0$, i.e. on spheres ${/mathbb S}_/kappa^3$, for $/kappa>0$, and on hyperbolic manifolds ${/mathbb H}_/kappa^3$, for $/kappa<0$. His goal is to define and study relative equilibria, which are orbits whose mutual distances remain constant in time. He also briefly discusses the issue of singularities in order to avoid impossible configurations. He derives the equations of motion and defines six classes of relative equilibria, which follow naturally from the geometric properties of ${/mathbb S}_/kappa^3$ and ${/mathbb H}_/kappa^3$. Then he proves several criteria, each expressing the conditions for the existence of a certain class of relative equilibria, some of which have a simple rotation, whereas others perform a double rotation, and he describes their qualitative behaviour.

€109.19
phương thức thanh toán
Mua cuốn sách điện tử này và nhận thêm 1 cuốn MIỄN PHÍ!
định dạng PDF ● Trang 80 ● ISBN 9781470414832 ● Nhà xuất bản American Mathematical Society ● Có thể tải xuống 3 lần ● Tiền tệ EUR ● TÔI 6597545 ● Sao chép bảo vệ Adobe DRM
Yêu cầu trình đọc ebook có khả năng DRM

Thêm sách điện tử từ cùng một tác giả / Biên tập viên

48.721 Ebooks trong thể loại này