In this volume, the authors show that a set of local admissible fields generates a vertex algebra. For an affine Lie algebra $/tilde{/mathfrak g}$, they construct the corresponding level $k$ vertex operator algebra and show that level $k$ highest weight $/tilde{/mathfrak g}$-modules are modules for this vertex operator algebra. They determine the set of annihilating fields of level $k$ standard modules and study the corresponding loop $/tilde{/mathfrak g}$-module-the set of relations that defines standard modules. In the case when $/tilde{/mathfrak g}$ is of type $A^{(1)}_1$, they construct bases of standard modules parameterized by colored partitions, and as a consequence, obtain a series of Rogers-Ramanujan type combinatorial identities.
قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
شكل PDF ● صفحات 89 ● ISBN 9781470402419 ● الناشر American Mathematical Society ● للتحميل 3 مرات ● دقة EUR ● هوية شخصية 6612852 ● حماية النسخ Adobe DRM
يتطلب قارئ الكتاب الاليكتروني قادرة DRM