In this volume, the authors show that a set of local admissible fields generates a vertex algebra. For an affine Lie algebra $/tilde{/mathfrak g}$, they construct the corresponding level $k$ vertex operator algebra and show that level $k$ highest weight $/tilde{/mathfrak g}$-modules are modules for this vertex operator algebra. They determine the set of annihilating fields of level $k$ standard modules and study the corresponding loop $/tilde{/mathfrak g}$-module-the set of relations that defines standard modules. In the case when $/tilde{/mathfrak g}$ is of type $A^{(1)}_1$, they construct bases of standard modules parameterized by colored partitions, and as a consequence, obtain a series of Rogers-Ramanujan type combinatorial identities.
ซื้อ eBook เล่มนี้และรับฟรีอีก 1 เล่ม!
รูป PDF ● หน้า 89 ● ISBN 9781470402419 ● สำนักพิมพ์ American Mathematical Society ● ที่สามารถดาวน์โหลดได้ 3 ครั้ง ● เงินตรา EUR ● ID 6612852 ● ป้องกันการคัดลอก Adobe DRM
ต้องใช้เครื่องอ่านหนังสืออิเล็กทรอนิกส์ที่มีความสามารถ DRM