In this volume, the authors show that a set of local admissible fields generates a vertex algebra. For an affine Lie algebra $/tilde{/mathfrak g}$, they construct the corresponding level $k$ vertex operator algebra and show that level $k$ highest weight $/tilde{/mathfrak g}$-modules are modules for this vertex operator algebra. They determine the set of annihilating fields of level $k$ standard modules and study the corresponding loop $/tilde{/mathfrak g}$-module-the set of relations that defines standard modules. In the case when $/tilde{/mathfrak g}$ is of type $A^{(1)}_1$, they construct bases of standard modules parameterized by colored partitions, and as a consequence, obtain a series of Rogers-Ramanujan type combinatorial identities.
Купите эту электронную книгу и получите еще одну БЕСПЛАТНО!
Формат PDF ● страницы 89 ● ISBN 9781470402419 ● издатель American Mathematical Society ● Загружаемые 3 раз ● валюта EUR ● Код товара 6612852 ● Защита от копирования Adobe DRM
Требуется устройство для чтения электронных книг с поддержкой DRM