Arne Meurman 
Annihilating Fields of Standard Modules of $/mathfrak {sl}(2, /mathbb {C})^/sim $ and Combinatorial Identities [PDF ebook] 

Stöd

In this volume, the authors show that a set of local admissible fields generates a vertex algebra. For an affine Lie algebra $/tilde{/mathfrak g}$, they construct the corresponding level $k$ vertex operator algebra and show that level $k$ highest weight $/tilde{/mathfrak g}$-modules are modules for this vertex operator algebra. They determine the set of annihilating fields of level $k$ standard modules and study the corresponding loop $/tilde{/mathfrak g}$-module-the set of relations that defines standard modules. In the case when $/tilde{/mathfrak g}$ is of type $A^{(1)}_1$, they construct bases of standard modules parameterized by colored partitions, and as a consequence, obtain a series of Rogers-Ramanujan type combinatorial identities.

€75.55
Betalningsmetoder
Köp den här e-boken och få 1 till GRATIS!
Formatera PDF ● Sidor 89 ● ISBN 9781470402419 ● Utgivare American Mathematical Society ● Nedladdningsbara 3 gånger ● Valuta EUR ● ID 6612852 ● Kopieringsskydd Adobe DRM
Kräver en DRM-kapabel e-läsare

Fler e-böcker från samma författare (r) / Redaktör

48 763 E-böcker i denna kategori