The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces $(X, /mathsf d, /mathfrak m)$. On the geometric side, the authors’ new approach takes into account suitable weighted action functionals which provide the natural modulus of $K$-convexity when one investigates the convexity properties of $N$-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors’ new approach uses the nonlinear diffusion semigroup induced by the $N$-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger’s energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong $/mathrm {CD}^{*}(K, N)$ condition of Bacher-Sturm.
Luigi Ambrosio
Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces [PDF ebook]
Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces [PDF ebook]
قم بشراء هذا الكتاب الإلكتروني واحصل على كتاب آخر مجانًا!
شكل PDF ● صفحات 121 ● ISBN 9781470455132 ● الناشر American Mathematical Society ● للتحميل 3 مرات ● دقة EUR ● هوية شخصية 8057418 ● حماية النسخ Adobe DRM
يتطلب قارئ الكتاب الاليكتروني قادرة DRM