Luigi Ambrosio 
Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces [PDF ebook] 

Apoio

The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces $(X, /mathsf d, /mathfrak m)$. On the geometric side, the authors’ new approach takes into account suitable weighted action functionals which provide the natural modulus of $K$-convexity when one investigates the convexity properties of $N$-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors’ new approach uses the nonlinear diffusion semigroup induced by the $N$-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger’s energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong $/mathrm {CD}^{*}(K, N)$ condition of Bacher-Sturm.

€124.57
Métodos de Pagamento
Compre este e-book e ganhe mais 1 GRÁTIS!
Formato PDF ● Páginas 121 ● ISBN 9781470455132 ● Editora American Mathematical Society ● Carregável 3 vezes ● Moeda EUR ● ID 8057418 ● Proteção contra cópia Adobe DRM
Requer um leitor de ebook capaz de DRM

Mais ebooks do mesmo autor(es) / Editor

48.721 Ebooks nesta categoria