Luigi Ambrosio 
Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces [PDF ebook] 

支持

The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces $(X, /mathsf d, /mathfrak m)$. On the geometric side, the authors’ new approach takes into account suitable weighted action functionals which provide the natural modulus of $K$-convexity when one investigates the convexity properties of $N$-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors’ new approach uses the nonlinear diffusion semigroup induced by the $N$-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger’s energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong $/mathrm {CD}^{*}(K, N)$ condition of Bacher-Sturm.

€125.09
支付方式
购买此电子书可免费获赠一本!
格式 PDF ● 网页 121 ● ISBN 9781470455132 ● 出版者 American Mathematical Society ● 下载 3 时 ● 货币 EUR ● ID 8057418 ● 复制保护 Adobe DRM
需要具备DRM功能的电子书阅读器

来自同一作者的更多电子书 / 编辑

49,025 此类电子书